New Online Course: IP Packet Networks, Addresses and Routers

Online Course L2213: IP Packet Networks, Addresses and Routers

In this course, we concentrate on the fundamentals of IP packet networks, routers and IP addresses.

Packet networks embody two main ideas: bandwidth on demand and packet switching.

First, we’ll recap channelized TDM and its limitations, then understand statistical TDM or bandwidth on demand.

Next, we’ll understand how routers implement the network with packet-switching, that is, relaying packets from one circuit to another, and how routers are a point of control for network security. We’ll introduce the term Customer Edge (CE).

Then we’ll cover the many aspects of IP addressing: IPv4 address classes, dotted decimal notation, static vs. dynamic addresses, DHCP, public vs. private addresses, Network Address Translation, IPv6 overview and finish with IPv6 address allocation and assignment.

1. Module Introduction   watch now (free)
2. Review: Channelized Time-Division Multiplexing (TDM)
3. Statistical Time-Division Multiplexing: Bandwidth-on-Demand
4. Private Network: Bandwidth on Demand + Routing
5. Routers
6. IPv4 Addresses
7. DHCP
8. Public and Private IPv4 Addresses
9. Network Address Translation   watch now (free)  new tutorial!
10. IPv6 Overview
11. IPv6 Address Allocations and Assignment

Overall objective
The objective of this course is to develop a solid understanding of IP. After taking this course, you will be up to speed on the fundamental principles of packet networks: bandwidth on demand, also known as overbooking or oversubscription, and packet forwarding. You will know the IP packet format and how IP addresses are allocated, assigned and displayed. You will know the difference between static and dynamic addresses, public and private addresses and how Network Address Translation works. An additional objective is to become familiar with the basics of IPv6.

Learning Objectives
Upon completion of this course, you will be able to explain:

  • The concept of statistical multiplexing, also known as oversubscription, overbooking and bandwidth on demand, why and how it can be implemented and its benefits.
  • What a private network is
  • What a router is and how it implements the network by connecting data links
  • How routers move packets between broadcast domains, including VLANs
  • How routers also act as a point of control for traffic, called packet filtering
  • The basic structure and contents of a routing table
  • The Customer Edge
  • IPv4 address blocks: Class A, Class B and Class C, and dotted-decimal notation
  • Static addresses and dynamic addresses, and how and why DHCP is used to assign both
  • Public addresses and private addresses, how, why and where each is used
  • Network Address Translation for interfacing domains where public addresses are used with those where private addresses are used
  • The improvements and changes between IPv4 and IPv6, and
  • The types of IPv6 addresses, how IPv6 addresses are allocated to ISPs then assigned to users, and how each residence gets 18 billion billion IPv6 addresses.

List of Lessons

Lesson 1. Course Introduction (this one).

Lesson 2. Review: Channelized Time-Division Multiplexing (TDM)
We’ll review the idea of channelized Time-Division Multiplexing, what channels are, and how they can be used to aggregate traffic onto a high-speed circuit. Then we’ll raise some questions: is that an efficient way to connect devices that produce traffic in bursts, which means devices that are normally doing nothing? And what about the problem of a single point of failure for all the aggregated traffic? Subsequent lessons explore the answers to those questions.

Lesson 3. Statistical TDM: Bandwidth-on-Demand.
In this lesson, we’ll understand how circuits that move bits constantly can be used efficiently when the user’s traffic profile is: “idle most of the time, interspersed with bursts of data every once in a while.” The answer is overbooking. This is also called statistical multiplexing and bandwidth-on-demand, and is a key part of a packet network: the internal circuits are heavily overbooked, to give users the highest speed at the lowest cost. It is necessary to know the users’ historical demand statistics – also called their traffic profile – to know how much to overbook, hence the term statistical multiplexing.

Lesson 4. Private Network: Bandwidth on Demand + Routing.
The purpose of this lesson is to expand the discussion of the previous lesson to include multiple circuits. The result is called a private network, and is the simplest framework for understanding routers, routing, network addresses and bandwidth-on-demand.

Lesson 5. Routers
In this lesson, we’ll take a closer look at a router, more precisely identifying the functions a router performs to implement a packet network, and understand how a router routes by examining the basic structure and content of a routing table. We’ll also understand how the router can act as a point of control, denying communications based on criteria including network address and port number, why this is implemented and its limitations. The term Customer Edge (CE) is defined in this lesson.

Lesson 6. IPv4 Addresses
Here, we’ll understand IPv4 addresses, address classes and the dotted-decimal notation used to represent them.

Lesson 7. DHCP
In this lesson, we’ll cover DHCP: the Dynamic Host Configuration Protocol, and understand the mechanism by which a machine is assigned an IP address. We’ll also understand how the “dynamic” host configuration protocol can be used to assign static addresses to machines and the advantages of this method.

Lesson 8. Public and Private IPv4 Addresses
The purpose of this lesson is to define the terms “public” and “private” IP address, review how IP addresses are assigned and the costs for those addresses, then cover the ranges of IPv4 addresses that are used as private addresses, and understand how and why they are used.

Lesson 9. Network Address Translation
In this lesson, we’ll explore how private IPv4 addresses used in-building and a public address required for Internet communications can be joined together with a software function called Network Address Translation.

Lesson 10. IPv6 Overview
Completing this course on IP, we’ll first review the next generation of IP: IPv6, understand the improvements compared to IPv4 and review the format of the IPv6 packet and its header.

Lesson 11. IPv6 Address Allocations and Assignment
Finally, we examine the structure of the 128-bit IPv6 address, review the different kinds of IP addresses, the organizations that allocate them, and the current plans for how addresses will be assigned to end users… and how every residence gets 18 billion billion IPv6 addresses.

802.11g Wireless LAN (WiFi) base station on my new Samsung Galaxy Android phone

Waiting for a flight at the airport. Time on my hands, I try out a feature included with the Android operating system on my new Samsung Galaxy: create an 802.11g Wireless LAN (WiFi) base station on the phone.

This WiFi network is automatically bridged inside the phone to the Internet connection provided by the cellular carrier.

Easy step-by-step instructions were included on the setup screen.

Fired up my laptop and found the WiFi network and connected no problem.

In fact, I sent a post to Google’s servers over the very link!

Ain’t technology wonderful.

Bonus: your car can now be a WiFi hotspot! You could even get a WiFi hotsopt logo sticker and put it on your back window, like Greyhound… On a long car trip with my family, all of whom have WiFi enabled iPhones, iPods, DSs etc. etc., I can tell them the WiFi password, and they can share my internet connection.

Double bonus: If the kids start squabbling, I can threaten to turn it off!

btw, I have 6 GB/month in my plan, so not so worried about usage-based pricing for the connection. Best check your billing plan before trying it.

EC

Wireless Telecommunications – new Online Course released

We’re pleased to announce the release of another online course: Wireless Telecommunications.

In this course, we cover wireless, concentrating mostly on mobile communications.

We’ll cover the principles of operation, jargon and buzzwords in the mobility business, the idea behind cellular radio systems, and explain the different spectrum-sharing technologies, including 1G analog FDMA, 2G TDMA/GSM vs. CDMA, 3G 1X vs. UMTS CDMA and 4G OFDMA.

We’ll conclude with a lesson on 802.11 wireless LANs (Wi-Fi) and a lesson on satellite communications.

Lessons in this module

1. Module Introduction – Wireless Communications
watch intro now (free)

2. Mobile Network Components, Jargon and Basic Operation

3. Cellular Principles and AMPS (1G)

4. 2G: Digital Radio – Voice Communications

5. Digital Cellular: Data Communications

6. Spectrum-Sharing Technologies: FDMA, TDMA, CDMA, OFDM

7. 3G Cellular: CDMA watch now (free)

8. 4G Mobile Cellular: LTE

9. 802.11 Wireless LANs – WiFi

10. Communication Satellites