Net Neutrality – Foolish, ignorant or disingenuous?

The popular press and news feeds have been full of stories about advocates of “net neutrality” testifying to congressional committees, lobbying the federal government and railing against the big ISPs over the past while.  Not much mention of arguments against net neutrality, though.  It’s hard to decide whether those arguing for net neutrality are foolish, ignorant or disingenuous.  
 
Let’s begin with some definitions. When someone demands “net neutrality”, they usually mean that the network must not discriminate between applications being carried in IP packets; that identical transmission characteristics (throughput, delay, number of errors, etc.) are to be provided for all packets regardless of what is being carried in them. They claim (correctly) that this is not the case at present, that the network service provider is “throttling” certain applications, “slowing down” or “shaping” traffic and that this, in their opinion, must stop. They sound the rallying cry “the net should be free”. 
 
What a load of hogwash.
But are these arguments foolish, ignorant or disingenuous?  Hard to decide: 

Continue reading “Net Neutrality – Foolish, ignorant or disingenuous?”

If you should know the answer to these questions about MPLS, but don't, this is the course for you:

Course 110 IP, VoIP and MPLS for the
Non-Engineering Professional
is the “next” course in our Core Training series, covering only newer technologies: virtually all aspects of IP networks and services.

Designed for non-engineers, this training course will give you the solid, vendor-independent foundation knowledge necessary to deal with IP telecom network projects and IP voice and data applications with confidence. 

If you want to know the answers to these questions, or you should know the answer to these questions, but don’t, this is the course for you: 
 
When an organization like AT&T or TELUS says it “has an MPLS network” and sells “MPLS services”,
– What exactly does that mean?
– Just what is an MPLS service anyway? What does it do? Who uses it? What for?
– Can you tell me two different ways MPLS service is different than Internet service?
– What benefit does that bring to the customer?
– Does it cost more? Better yet, is it costed the same way as Internet service?
– How do you connect to MPLS service?
– What is the technology and business environment for MPLS service going to in 2015?
 
I think you’ll agree that knowledge set is career-enhancing knowledge. We often tell people “if you want a guaranteed job, be an expert in MPLS”. Here’s a great place to start! 

And this is only one part of this intensive, three-day leadership and technology development course!
You will also learn the workings of SIP and softswitches; the nuts-and-bolts of packetized voice and its protocols; Layer 2, VLANs and 10 Mb/s – 40 Gb/s Ethernet services; IP routing; the ISP business and more.

In three days, you’ll get up to speed, demystify jargon and buzzwords, fill the gaps, understand the technologies, the underlying ideas and how it all fits together… knowledge you can’t get from trade magazines or salespeople. 

This investment will be repaid many times over, eliminating frustration at buzzword-filled meetings, increasing your efficiency, and helping ensure you make the right choices. IP, VoIP and MPLS is an essential knowledge set going forward in telecommunications. 

This professional training course will give you the solid, vendor-independent foundation necessary to deal with IP telecom network projects and IP voice and data applications with confidence. 

Get this career-enhancing knowledge today! more info

How ISPs connect to the Internet: peering vs. transit

This discussion is covered in Course 101, Chapter 16 “Understanding the Internet”,
and in more depth in Course 110, Chapter 16 “IP as a Business: Carrier Networks, Competition and Interconnect”

Originally, the only way to get on to the Internet was from a terminal connected to a computer at a university or research institute. The Internet was mostly circuits paid for by the taxpayers via the National Science Foundation. Today, commercial Internet access providers, called Internet Service Providers (ISPs) provide the capability for anyone to access and communicate over on the Internet. These ISPs are for the most part business units of facilities-based carriers, i.e. telephone companies and cable companies.

Such service providers have physical access circuits and circuit-terminating equipment on the customer side, plus routers, security and access control equipment to manage customer traffic. This is often organized with data centers in cities or regions, which are interconnected. This ensemble of interconnected routers controlled by an ISP is called an Autonomous System (AS).

The Internet is a vast, unregulated collection of interconnected Autonomous Systems. The connections between ASs are not specified by a central authority or world government, but are implemented on a case-by-case basis by the operators of an AS for business reasons. The Internet is not free. It is not a public utility. It is a business.

ISPs operating ASs will connect to competitors and content providers like Google to exchange traffic terminating on each other’s network (called peering), and will connect to larger organizations who will assure delivery of packets to other destinations (transit). The networks are physically connected at Internet Exchange (IX) centers such as Equinix Chicago at 350 E Cermak. These are buildings with equipment implementing network interconnection operated by a neutral third party. The ASs are responsible for paying for connectivity to the IX.

Course 101, page 16.09: Internet Service Providers

Internet Service Providers

Peering is settlement-free, i.e. no money is exchanged. Transit is a commercial service that costs money. Larger ISPs charge smaller ISPs for transit services. The largest networks are sometimes called Tier-1 service providers… but “Tier-1” is not an officially defined term. Some claim that it means a network “close to the center of the Internet” or a network that does not pay for transit. However, there is no “center” to the Internet, and virtually all networks employ a mix of peering and transit agreements to connect to other networks… and the nature of such connections is non-disclosed confidential business information. A “Tier-1 network” might best be thought of as one operated by a very big facilities-based carrier that has presence in most or all IXs and sells transit services to smaller networks and ISPs.

The ISPs build the access network and peering or transit connections to other networks, then charge the users for access. It’s a pyramid scheme. The end users end up paying for all.

In addition to access services, the ISP usually provides a Web server to host your website, a Domain Name Server, and an e-mail server.
Back in the Flintstones era when dial-up Internet access was first available, telcos were a bit slow to react, so for a while, companies like Netcom, MindSpring, Portal, Pipeline, iStar and others had their day in the sun. These organizations were resellers, leasing circuits from a carrier and reselling them to users under per-minute or per-month billing plans.

The carriers eventually began competing with resellers, who for the most part went out of business, selling their customers to the carriers. For example, Netcom is now part of Earthlink, which is majority owned by Sprint. AOL and MSN are the biggest remaining reseller-type ISPs. For the most part, it is business units of the companies that own the cables coming into your home: the LEC and the cable TV company that are the dominant ISPs today.

If you do choose to use a reseller-type ISP, particularly for a business or organization, questions regarding customer service, capacity and availability should be asked. Another is redundancy – do they have a single point of failure? Do they have multiple connections to different Tier-1 providers? What capacity are those connections?

This discussion is covered in Course 101, Chapter 16 “Understanding the Internet”,
and in more depth in Course 110, Chapter 16 “IP as a Business: Carrier Networks, Competition and Interconnect”

The Mature Competitive Environment: Regional Rings and MANs

Competition today means much more than the 1984 idea of LECs, competitive IXCs and switched access charges or subcontracted dedicated access lines. Competition today includes competitors providing various services to residences and business customers using a mix of switched access, subcontracted dedicated access, plus colocation and bypass on the “last mile”. Continue reading “The Mature Competitive Environment: Regional Rings and MANs”

4G Cellular, OFDM and LTE – the "GSM vs. CDMA" Standards War Ends!

This tutorial is part of the most recent update to Course 101, Chapter 6, October 2008.

After more than 20 years, it appears that an almost universally-accepted standard for mobile radio may finally be implemented, bringing to an end the standards war between carriers that deployed TDMA/GSM for second generation and carriers that deployed CDMA for second generation. Those two factions continued the standards war for the third generation (UMTS and 1X respectively); but now carriers from both of the factions are supporting the GSM/UMTS faction’s Third Generation Partnership Project (3GPP) release 8, known as Universal Terrestrial Radio Access Network Long Term Evolution (LTE). Continue reading “4G Cellular, OFDM and LTE – the "GSM vs. CDMA" Standards War Ends!”

Soft Switches

The term soft switch is not defined in a standard… meaning that marketing departments at different equipment and software manufacturers use the same term to describe different things.

A switch, in its simplest form, is a device that causes communications to happen from one point to one other particular point, often when there are multiple “other” points to choose from.

A traditional Central Office (CO) telephone switch might be called a “hard” switch, since it has physical line cards that terminate loops. The switching software running on the computer which is the CO switch directs traffic between a line card and a trunk or between two line cards during a phone call.

The term soft switch is used to mean a computer running switching software that does not have telephone line cards – the communications are instead directed to the correct destination by routers routing packets, a software function.

softswitch diagram

Continue reading “Soft Switches”

Is the Internet a Public Utility?

Reading articles and blogs about Net Neutrality, one often sees the justification for government interference in the operation of IP networks to allow people stealing copyrighted works to consume bandwidth 24/7 at line speed “because the Internet is a public utility.”

It ain’t. The Internet is a business.

Reading articles and blogs about Net Neutrality, one often sees the justification for government interference in the operation of IP networks to allow people stealing copyrighted works using bittorrent (the net neutrality advocates) to consume bandwidth 24/7 at line speed “because the Internet is a public utility.”

It ain’t. The Internet is a business.

Continue reading “Is the Internet a Public Utility?”

Net neutrality – not. VideoTutorial on Service Level Agreements, traffic shaping and traffic policing

This video tutorial explains Service Level Agreements, traffic profiles, transmission characteristics, and how Differentiated Services (Diff-Serv) is implemented to be able to provide different transmission characteristics for different kinds of traffic – the EXACT OPPOSITE of net neutrality.

watch on youtube

When someone demands “net neutrality”, they usually mean that the network must not discriminate between applications being carried in IP packets; that identical transmission characteristics (throughput, delay, number of errors, etc.) are to be provided for all packets regardless of what is being carried in them. They claim (correctly) that this is not the case at present, that the network service provider is “throttling” certain applications, “slowing down” or “shaping” traffic (the correct term is “policing”) and that this, in their opinion, must stop.

This video tutorial explains Service Level Agreements, traffic profiles, transmission characteristics, and how Differentiated Services (Diff-Serv) is implemented to be able to provide different transmission characteristics for different kinds of traffic – the EXACT OPPOSITE of net neutrality.

It is taken from Teracom’s DVD video V9 Understanding Voice over IP 2: Voice Packetization • Voice Quality • Codecs, Jitter and Packet Loss • Diff-Serv • Network QoS with MPLS

 

ALL “NET NEUTRALITY” ARTICLES:

Net Neutrality – Foolish, ignorant or disingenuous?

Net Neutrality II: If the power company allowed this, your electrical bill would double

Net neutrality – not. VideoTutorial on Service Level Agreements, traffic shaping and traffic policing

Is the Internet a Public Utility?

 

Visit Teracom Training Institute for more information on telecommunications training and voip training

Net Neutrality II: If the power company allowed this, your electrical bill would double.

If “net neutrality” principles were applied to electricity, it would be like having no electricity meter. Everyone pays the same, regardless how much power they use. The problem: if you’re one of the 99% of normal users, you would have to pay DOUBLE what you normally would, to cover the costs of the 1% of users constantly drawing 200 amps 24 hours a day, 7 days a week, 365 days a year.

Following up on a previous discussion, a demand for “net neutrality” usually means a demand that the network must not discriminate between applications being carried in IP packets; that identical transmission characteristics (throughput, delay, number of errors, etc.) are to be provided for all packets regardless of what is being carried in them.

But a demand for “net neutrality” is usually also wrapped together with a demand by these same people for no metering, no usage charges. This would mean that users who are continuously transmitting and receiving packets would pay the same flat rate as someone who is paying only for a typical traffic profile.

If this principle were applied to electricity, it would be like having no electricity meter. Everyone pays the same, regardless how much power they use. The problem: if you’re one of the 99% of normal users, you would have to pay DOUBLE what you normally would, to cover the costs of the 1% of users constantly drawing 200 amps 24 hours a day, 7 days a week, 365 days a year.

Here’s how that would work:
Continue reading “Net Neutrality II: If the power company allowed this, your electrical bill would double.”

Digitally-Signed Email: Authentication and Digital Signatures

E-mail was one of the first “killer apps” on the Internet, and has been a major contributor to increases in productivity over the past ten years. Of course, along with email came the scourge of spam. Criminals infect computers with trojan horse programs, creating collections of machines they control remotely to send millions of unsolicited offers for fake watches, pirated software, phony medications and ecard invitations to infect your computer.

As spam reaches 30, 40 or even 100 unwanted messages per day on a targeted account, it is becoming essential to automatically separate legitimate messages from spam. One tool available to senders of legitimate emails to aid the recipient in this process is to digitally sign their messages, allowing the recipient to establish a level of comfort that the message actually came from the indicated sender.

Continue reading “Digitally-Signed Email: Authentication and Digital Signatures”