Category Archives: MPLS

Development #3: MPLS has replaced ATM

A closer look at the third item in our list of eight major recent developments and trends in telecom

Telecommunications technology is constantly changing and improving – seemingly faster and faster every year – and at Teracom, we keep our training courses up to date to reflect these changes.  In a previous post, we identified eight major developments and trends in telecommunications incorporated in our training.

In this post, we take a closer look at the third development:
MPLS has replaced ATM for traffic management, achieving  another long-held goal in the telecommunications business, called convergence or service integration.


A long-held goal in the telecommunications business has been to transport and deliver all types of communications on the same network and access circuit, and in an ideal world, with a single bill to the customer. This idea is sometimes called convergence, though service integration is a more accurate term.

It results in a large cost savings compared to different networks, access circuits and bills for each type of communications.
In days past, this was not the case.

A residence would have at least two entry cables: twisted pair for telephone and coax for television, and separate bills for each.

The situation was even worse and more expensive in the case of a medium or large organization.

At each location, a typical organization would have the requirement to communicate
• Telephone calls to/from the PSTN,
• Telephone calls to/from other locations of the organization,
• Data to/from other locations of the organization, and
• Data, video and possibly voice to/from the Internet.

In days past, the organization might have had four physical access circuits and services – along with four bills:
• ISDN PRI over T1 to a LEC for telephone calls to/from the PSTN,
• Tie lines or a voice VPN with a custom dialing plan from an IXC for telephone calls to/from other locations of the organization,
• Dedicated T1s from an IXC for data to/from other locations of the organization, and
• DSL, Cable or T1 access from an ISP for data, video and possibly voice to/from the Internet.

Not only did this mean four services and four access technologies and four bills for the customer, it also meant the carrier had to implement and support four network technologies… a very expensive situation.

MPLS for Service Integration

The solution to integrate all of this onto one access circuit and one network is twofold:
At the source,
• Format all types of traffic the same way, and
• Paste an identifier on the front of each piece of traffic, indicating what it is and where it goes.

Then all traffic can be carried interspersed on the same access circuit and in the same network, which results in a huge cost savings for both the customer and the carrier.

The identifier on the traffic is used to both route the traffic to the correct destination, and manage the traffic in the network, performing functions like load balancing, prioritization and restoration.

Starting in the 1980s, telephone companies and equipment manufacturers attempted to implement this with a technology called Asynchronous Transfer Mode (ATM). Literally billions of dollars were spent developing and deploying ATM from 1980 to 2000… but it failed and died, becoming too complex and too expensive, and not used for voice at the big telephone companies.

Multiprotocol Label Switching (MPLS) combined with IP has succeeded where ATM failed and is now universally implemented.

Of course, there is a lot of jargon to learn and many components to the “MPLS” story.

Here is a VERY brief explanation:
• All traffic is formatted into IP packets by the equipment that generates it, for example, a telephone or computer.
• Traffic is categorized into classes. A class of traffic goes from the same place to the same place and experiences the same transmission characteristics like delay and lost packets.
• A packet is identified as belonging to a particular class by pasting a number called a label on the front of the IP packet.
• The device that does the classification and labeling of packets is the ingress device, called a Label Edge Router in MPLS. It is normally Provider Equipment (PE), meaning owned and furnished by the service provider, located at the customer premise.
• Network equipment, called Label Switching Routers in MPLS, use the label number to route and in some cases prioritize the packet.
• Labels can be stacked, meaning one label pasted in front of another. This allows the network to manage similar kinds of traffic as a single entity in network control systems.

Returning to our example illustrated above, the four circuits illustrated at the top of the diagram can be replaced with one access circuit with three traffic classes (three labels). The physical access circuit could be 10 Mb/s to 10 Gb/s Optical Ethernet.

The three traffic classes / labels would be:
• A traffic class for telephone calls. This might be called a “SIP trunking service” by the marketing department. This class will carry VoIP phone calls to the carrier for communication to other locations of the organization, or for conversion to traditional telephony for phone calls to the public telephone network.
• A traffic class for data. This might be called a “VPN service” by the marketing department. This class carries file transfers, client-server database communications and the like securely to other locations of the organization.
• A traffic class for Internet traffic. This class carries anything in IP packets to the Internet.

All of this traffic is IP packets interspersed over the single access circuit.

At the other end of the access circuit, the carrier uses the label to route the traffic onward and possibly prioritize it to assure the appropriate service level.

The result is all of the organization’s traffic carried over a single access circuit, using a single technology.

This is one of the Holy Grails of the telecommunications business, called convergence or service integration, having significant advantages in cost and flexibility.


This is a concise description of a story that has many different facets.

In Teracom training, this discussion comes AFTER many other lessons explaining all of the underlying concepts, related technologies like PRI and SIP trunking and their jargon.

If you would like the whole story, it is currently included in the following training:

Course 101: Telecom, Datacom and Networking
for Non-Engineering Professionals

Certified Telecommunications Network Specialist (CTNS)
Online telecommunications certification courses

Telecom, Datacom and Networking for Non-Engineers textbook

and DVD-Video Courses V3 and V4.

Cheers!

New Online Course L2114: MPLS and Carrier Networks

MPLS and Carrier Networks
MPLS and Carrier Networks
is a comprehensive training course designed to build a solid understanding of carrier packet networks and services, the terminology, technologies, configuration, operation and most importantly, the underlying ideas… in plain English.

This course can be taken by both those who need simply an overview and introduction to the fundamentals of carrier packet networks and MPLS, and by those who need to get up to speed and establish a solid base that project or job-specific knowledge can be built on.

We’ll cut through the buzzwords and marketing to demystify carrier packet networks and services, explaining Service Level Agreements, traffic profiles, virtual circuits, QoS, Class of Service, Differentiated Services, integration, convergence and aggregation, MPLS and other network technologies, and how they relate to TCP/IP without bogging down on details.

You will gain career- and productivity-enhancing knowledge of the structure, components and operation of carrier packet networks and services, how they are implemented, packaged and marketed by carriers and how they are used by government, business… and other carriers.

Net Neutrality – Foolish, ignorant or disingenuous?

The popular press and news feeds have been full of stories about advocates of “net neutrality” testifying to congressional committees, lobbying the federal government and railing against the big ISPs over the past while.  Not much mention of arguments against net neutrality, though.  It’s hard to decide whether those arguing for net neutrality are foolish, ignorant or disingenuous.  
 
Let’s begin with some definitions. When someone demands “net neutrality”, they usually mean that the network must not discriminate between applications being carried in IP packets; that identical transmission characteristics (throughput, delay, number of errors, etc.) are to be provided for all packets regardless of what is being carried in them. They claim (correctly) that this is not the case at present, that the network service provider is “throttling” certain applications, “slowing down” or “shaping” traffic and that this, in their opinion, must stop. They sound the rallying cry “the net should be free”. 
 
What a load of hogwash.
But are these arguments foolish, ignorant or disingenuous?  Hard to decide: 

Continue reading Net Neutrality – Foolish, ignorant or disingenuous?

If you should know the answer to these questions about MPLS, but don't, this is the course for you:

Course 110 IP, VoIP and MPLS for the
Non-Engineering Professional
is the “next” course in our Core Training series, covering only newer technologies: virtually all aspects of IP networks and services.

Designed for non-engineers, this training course will give you the solid, vendor-independent foundation knowledge necessary to deal with IP telecom network projects and IP voice and data applications with confidence. 

If you want to know the answers to these questions, or you should know the answer to these questions, but don’t, this is the course for you: 
 
When an organization like AT&T or TELUS says it “has an MPLS network” and sells “MPLS services”,
– What exactly does that mean?
– Just what is an MPLS service anyway? What does it do? Who uses it? What for?
– Can you tell me two different ways MPLS service is different than Internet service?
– What benefit does that bring to the customer?
– Does it cost more? Better yet, is it costed the same way as Internet service?
– How do you connect to MPLS service?
– What is the technology and business environment for MPLS service going to in 2015?
 
I think you’ll agree that knowledge set is career-enhancing knowledge. We often tell people “if you want a guaranteed job, be an expert in MPLS”. Here’s a great place to start! 

And this is only one part of this intensive, three-day leadership and technology development course!
You will also learn the workings of SIP and softswitches; the nuts-and-bolts of packetized voice and its protocols; Layer 2, VLANs and 10 Mb/s – 40 Gb/s Ethernet services; IP routing; the ISP business and more.

In three days, you’ll get up to speed, demystify jargon and buzzwords, fill the gaps, understand the technologies, the underlying ideas and how it all fits together… knowledge you can’t get from trade magazines or salespeople. 

This investment will be repaid many times over, eliminating frustration at buzzword-filled meetings, increasing your efficiency, and helping ensure you make the right choices. IP, VoIP and MPLS is an essential knowledge set going forward in telecommunications. 

This professional training course will give you the solid, vendor-independent foundation necessary to deal with IP telecom network projects and IP voice and data applications with confidence. 

Get this career-enhancing knowledge today! more info

Is the Internet a Public Utility?

Reading articles and blogs about Net Neutrality, one often sees the justification for government interference in the operation of IP networks to allow people stealing copyrighted works using bittorrent (the net neutrality advocates) to consume bandwidth 24/7 at line speed “because the Internet is a public utility.”

It ain’t. The Internet is a business.

Continue reading Is the Internet a Public Utility?

Net neutrality – not. VideoTutorial on Service Level Agreements, traffic shaping and traffic policing

watch on youtube

When someone demands “net neutrality”, they usually mean that the network must not discriminate between applications being carried in IP packets; that identical transmission characteristics (throughput, delay, number of errors, etc.) are to be provided for all packets regardless of what is being carried in them. They claim (correctly) that this is not the case at present, that the network service provider is “throttling” certain applications, “slowing down” or “shaping” traffic (the correct term is “policing”) and that this, in their opinion, must stop.

This video tutorial explains Service Level Agreements, traffic profiles, transmission characteristics, and how Differentiated Services (Diff-Serv) is implemented to be able to provide different transmission characteristics for different kinds of traffic – the EXACT OPPOSITE of net neutrality.

It is taken from Teracom’s DVD video V9 Understanding Voice over IP 2: Voice Packetization • Voice Quality • Codecs, Jitter and Packet Loss • Diff-Serv • Network QoS with MPLS

 

ALL “NET NEUTRALITY” ARTICLES:

Net Neutrality – Foolish, ignorant or disingenuous?

Net Neutrality II: If the power company allowed this, your electrical bill would double

Net neutrality – not. VideoTutorial on Service Level Agreements, traffic shaping and traffic policing

Is the Internet a Public Utility?

 

Visit Teracom Training Institute for more information on telecommunications training and voip training

Net Neutrality II: If the power company allowed this, your electrical bill would double.

Following up on a previous discussion, a demand for “net neutrality” usually means a demand that the network must not discriminate between applications being carried in IP packets; that identical transmission characteristics (throughput, delay, number of errors, etc.) are to be provided for all packets regardless of what is being carried in them.

But a demand for “net neutrality” is usually also wrapped together with a demand by these same people for no metering, no usage charges. This would mean that users who are continuously transmitting and receiving packets would pay the same flat rate as someone who is paying only for a typical traffic profile.

If this principle were applied to electricity, it would be like having no electricity meter. Everyone pays the same, regardless how much power they use. The problem: if you’re one of the 99% of normal users, you would have to pay DOUBLE what you normally would, to cover the costs of the 1% of users constantly drawing 200 amps 24 hours a day, 7 days a week, 365 days a year.

Here’s how that would work:
Continue reading Net Neutrality II: If the power company allowed this, your electrical bill would double.