Telecom 101 – Fourth Edition, 2016 released and on sale!

Telecom 101 Textbook – Fourth Edition 2016 is out
– and on sale for a limited time!

9781894887038_frontcoverHigh-Quality Reference Book and Study Guide Covering All Major Topics, Up To Date To 2016… in Plain English.

It’s been eight years since the last edition (an eon in technology time). Hot off the press! The new Fourth Edition is totally updated to today’s IP and Ethernet telecom technologies – while still starting with the fundamentals.

Packed with information, authoritative, up to date, covering all major topics – and written in plain English – Telecom 101 is an invaluable textbook and day-to-day reference on telecommunications.

Telecom 101 covers the core knowledge set required in the telecom business today: the technologies, the players, the products and services, jargon and buzzwords, and most importantly, the underlying ideas… and how it all fits together.

The course materials for Teracom’s famous Course 101 Telecom, Datacom and Networking for Non-Engineers, augmented with additional topics and bound in this one volume bring you consistency, completeness and unbeatable value.

Our approach can be summed up with a simple philosophy: Start at the beginning. Progress in a logical order. Build one concept on top of another. Finish at the end. Avoid jargon. Speak in plain English.

Bust the buzzwords, demystify jargon, and cut through doubletalk!
Fill gaps and build a solid base of structured knowledge.
Understand how everything fits together.
… knowledge and understanding that lasts a lifetime.

Ideal for anyone needing a book covering all major topics in telecom, data communications, IP and networking… in plain English.

A wealth of clear, concise, organized knowledge, impossible to find in one place anywhere else!

Join thousands of satisfied customers!
Telecom 101
7″ x 9″ softcover textbook • 488 pages
4th edition • Published March 2016
print ISBN 9781894887038
eBook ISBN 9781894887786
Print quantities are limited. Order now to avoid disappointment.
https://www.teracomtraining.com/textbook/t101.htm

 

Your Go-To Telecom Resource

Covering all major topics, we begin with the Public Switched Telephone Network (PSTN), then

• progress in a logical order, building one concept on top of another,
• from voice and data fundamentals to digital, packets, IP and Ethernet, VoIP,
• fiber and wireless, DSL and cable, routers and networks, MPLS, ISPs and CDNs,
• and finish with the Brave New World of IP Telecom, where voice, data and video are the same thing.

• An invaluable day-to-day reference handbook

• Learn and retain more reading a hard copy, professionally printed and bound

• Up-to-date: published 2016

• Allows you to study and review topics before attending a course

• An economical and convenient way to self-study
… these are the materials to an instructor-led course that costs $1395 to attend.

• The Certification Study Guide for the prestigious Telecommunications Certification Organization (TCO) Certified Telecommunications Analyst (CTA) telecommunications certification.

 

Value Pricing

Written by our top instructor, Eric Coll, M.Eng., Telecom 101 contain 35 years of knowledge and learning distilled and organized into an invaluable study guide and practical day-to-day reference for non-engineers.

Looking through the chapter list and detailed outline below, you’ll see that many chapters of Telecom 101 are like self-contained reference books on specific topics, like the PSTN, IP, LANs, MPLS and cellular.

You can get all of these topics bound in one volume for one low price.

Compare this to hunting down and paying for multiple books by different authors that may or may not cover what you need to know- and you’ll agree this is a very attractive deal.

Career- and productivity-enhancing training… an investment that will be repaid many times over.

Get your copy today!

Winter Solstice Feast Week Celebrations! 20% OFF ANYTHING

BOOT CAMPLast month, the days were getting shorter and shorter, and the sun was reaching a lower and lower height in the sky every day.
 
I was starting to worry that the sun would go away altogether.
 
So I put some lights in the trees and turned them on when it was dark, to encourage the sun to come back.
 
It worked!
 
Today, I am certain that the days are no longer getting shorter, they have started to get longer! The sun is coming back!
 
To celebrate, we are going to exchange presents and have a week of feasting, capped off with a big party!
 
To honor the new sun, we are offering a sacrifice of 20% off anything during Feast Week.
 
Offer ends January 6.
 
https://www.teracomtraining.com/specials.htm

Tutorial: Packetized Voice

This is Section 2.9.1 of the new Telecom 101, 4th edition
print and ebook available January 2016

BOOT CAMP

.

Brought to you by BOOT CAMP
January 25-29 2016 – Silicon Valley

 

– – –

This diagram provides a very high-level block diagram view of the processes involved in communicating speech in IP packets from one person to another:

Voice in IP Packets
Voice in IP Packets End-to-End

Starting on the left, commands from the speaker’s brain cause combinations of lungs, diaphragm, vocal cords, tongue, jaw and lips to form sounds.

A microphone is positioned in front of the mouth and acts as a transducer, creating a fluctuating voltage which is an analog or representation of the sound pressure waves coming out of the speaker’s throat.

This is fed into a codec, which digitizes the voltage analog by taking samples of it 8,000 times per second and coding the value of sample into binary 1s and 0s. Typically, the value of each sample is represented with a byte, meaning 64 kb/s to be transmitted.

Approximately 20 ms worth of coded speech is taken as a segment and placed or encapsulated in an IP packet.

The IP packet begins with a header, which is control information, the most interesting part being the IP address of the source telephone and IP address of the destination telephone.

IP packets are moved from the source to the destination over a sequence of links.

The links are connected with routers, which relay the packets from one link to the next.

Lower level functions such as framing and link addressing are usually performed following the IEEE Ethernet and MAC standards.

At the lowest level, the links are physcially implemented with Category 6 LAN cables, DSL modems, Cable modems, fiber optics and radio systems.

At the destination, the bits are extracted from the IP packet and fed into a codec, which re-creates the analog voltage.

This voltage drives a speaker, which re-creates the sound pressure waves, which travel down the ear canal to the inner ear, causing hairs on the cochlea to vibrate, triggering neural impulses to the brain, making the listener think they are hearing something.

– – –

It’s important to note that the voice packets are communicated directly from one telephone to the other over the IP network.
The packets do not pass through a CO telephone switch, for example.

– – –

For a full explanation of all of the technologies mentioned in this tutorial, register for BOOT CAMP in Sunny Silicon Valley in January!

BOOT CAMP

BOOT CAMP
is Core Training Course 101 Telecom, Datacom and Networking for Non-Engineering Professionals
and VoIP Course 130 Understanding Voice over IP
in one week at a discounted price.

Get this career-enhancing boost.  Check it out!

Sale: Year-End Special – DVD Courses 50% off

DVD Course V4: Understanding Networking 1
Illustration of DVD Course V4: Understanding Networking 1. Runtime 2 hours, 7 minutes + 58-page 8.5 x 11 softcover bound course book

Nearing year-end? Money left in budgets?
Seize the opportunity to benefit from Teracom’s world-renowned training!

Teracom DVD Courses are invaluable addition to your training resources …
and an excellent choice for allocating budgeted funds at year-end before they disappear.

Teracom DVDs feature our entertaining on-screen instructor to keep your attention, along with plenty of crisp graphics and bullets – and come with printed books for each DVD course.

DVDs can be passed around between team members, or connect a DVD to an LCD projector to get high-value-added team training sessions for a remarkably low price.

Covering everything from POTS to CDMA, IP, VoIP and MPLS, we
– bust the buzzwords and demystify jargon,
– explain technologies, protocols and mainstream solutions, and
– most importantly: the underlying ideas and how it all works together… in plain English.

To make things easier, save 50% on all DVD Courses and Packages until the end of the year!
Full Library (9 two-hour DVDs + 9 books): $1690  sale $845
Core training set (5 two-hour DVDs + 5 books): $879  sale $439
Individual DVD Courses (DVD + course book): $239  sale $119
Compare to $2000 for one course elsewhere, and you’ll agree these are very good deals!

Course descriptions  –  price list  –  printable brochure  –  ordering

Plus, all packages of five or more DVD courses come with unlimited access to the online CTNS Courses and Certification for up to five people as a free bonus!

Funds – in either departmental or project budgets – for training, employee development, productivity enhancement, team building, special projects, office supplies and general expenses can all be legitimately used to make this invaluable, productivity-enhancing addition to your group’s resources.

Take advantage of this opportunity today!
Use coupon # 1237 at checkout for a 50% discount.

Development #4: A Worldwide Standard for Mobile Wireless

A closer look at the fourth item in our list of eight major recent developments and trends in telecom.

Telecommunications technology is constantly changing and improving – seemingly faster and faster every year – and at Teracom, we keep our training courses up to date to reflect these changes. In a previous post, we identified eight major developments and trends in telecommunications incorporated in our training.

In this post, we take a closer look at the fourth development:
a worldwide standard for mobile wireless has finally been achieved with 4G LTE.


Mobility means it is possible to start communicating with a particular radio base station, then when moving physically away, be handed off to another base station down the road to continue communications uninterrupted. In a non-mobile system (like WiFi), communication ceases if you move too far away.

The first generation (1G) of mobile radio was characterized by analog FM on frequency channels. Numerous incompatible systems were deployed: AMPS in North America, TACS in the UK, NMT in Finland and others.

The second generation (2G) was digital, which means modems communicating 1s and 0s between the handset and base station. Again, several incompatible systems were deployed, and two warring factions emerged, which could be called the “GSM/TDMA faction”, and the “CDMA faction”.

By far, the most popular 2G system was GSM, a European technology where a number of users time-share a single radio channel. Another system was IS-136, called “TDMA” in North America, deployed by the company currently known as AT&T Wireless in the US and Rogers in Canada.

A less popular 2G system employed CDMA, using technology patented by American company Qualcomm, and deployed by Verizon, Sprint and Canadian telephone companies.

These 2G systems were totally incompatible. A basic phone from a carrier could not work on another carrier unless they both used exactly the same system.

To try to avoid a repeat of the incompatibility for the third generation, the International Telecommunications Union (ITU) struck a standards committee in year 2000 called IMT-2000, its mission to define a world standard for 3G.

They failed. IMT-2000 instead published a 3G “standard” with five incompatible variations. The two serious variations were both CDMA – but differed on the width of the radio bands, the control infrastructure and synchronization method among other things.

The GSM/TDMA faction favored the deployment of CDMA in a 5 MHz wide band. This was called IMT-DS, Direct Spread, Wideband CDMA and Universal Mobile Telephone Service (UMTS). Its data-optimized version was called HSPA.

The CDMA faction favored a strategy that was a basically a software upgrade from 2G, employing existing 1.25 MHz radio carriers. This is called IMT-MC, CDMA multi-carrier, CDMA2000 and 1X. Its data-optimized version was called 1XEV-DO.

Again, these 3G systems were completely incompatible. A basic UMTS phone could not work on a 1X network.

Market forces finally pushed the two camps together.

The fact that there were far more users in the GSM/TDMA faction meant that their phones were less expensive, had better features and appeared on the market first. This put the carriers in the CDMA/1X faction at a disadvantage. This trend was continuing into 3G, where UMTS phones would have the same advantage over 1X phones.

Then, Steve Jobs invented the world’s most popular consumer electronic product, the iPhone – but only permitted carriers in the GSM/TDMA/UMTS faction to have it. This severely tilted the playing field.

In the face of this, the CDMA/1X faction threw in the towel, and decided to go with the GSM/TDMA/UMTS faction’s proposal for the fourth generation (4G), called LTE, to level the playing field.

And once this was agreed, Steve Jobs allowed the iPhone on all networks. One of the legacies of Steve Jobs will not just be the iPhone, but ending the standards wars by pushing the industry to agree on LTE as a single worldwide standard for mobile communications as of the fourth generation, using the leverage of his iPhone.


I hope you’ve found this article useful!

If you like, you can watch a video segment of our instructor explaining why LTE became a worldwide standard on youTube

Additional explanation of cellular concepts, TDMA, CDMA and LTE is available in:
Teracom online tutorials
Course 101: Telecom, Datacom and Networking
for Non-Engineering Professionals

Textbook T4210
Telecom, Datacom and Networking
for Non-Engineer
s

- Online Course 2206 Wireless Telecommunications
(part of the CTNS certification coursework)
Online Course 2232 Mobile Communications
(part of the CWA certification coursework), and
DVD Course V6 “Wireless”

Tutorial: Bluetooth

This tutorial on Bluetooth is Lesson 2: Bluetooth, from Course 2233 “Fixed Wireless”.  Watch the lesson by clicking the picture below.
You can also watch the video on YouTube.
The text is from the Course book / CWA certification study guide.

Enjoy!

Young man illustrating Bluetooth channel as frequency-hopping pattern using a pogo stick. Click the image to watch the full lesson. The text that follows is from the course book.
Young man illustrating Bluetooth channel as frequency-hopping pattern using a pogo stick.
Click the image to watch the full lesson. The text that follows is from the course book.

Bluetooth is a set of standards for short-range digital radio communication published by a consortium of companies called the Special Interest Group. It was originally developed as a wireless link to replace cables connecting computers and communications equipment.

Bluetooth connections are called piconets and Personal Area Networks since (in theory) up to eight devices can communicate on a channel within a range of 1 to 100 meters depending on the power.

In reality, Bluetooth is mostly used point-to-point with ten meters range.

The first data rate for Bluetooth was 0.7 Mb/s, followed by an enhancement to “3” Mb/s (2.1 Mb/s in practice). A High Speed variation employs collocated Wi-Fi for short high-bitrate transmissions at 24 Mb/s. The Smart or Low Energy variation allows coin-sized batteries on devices like heart-rate monitors.

Bluetooth applications
Bluetooth applications

Applications include wireless keyboard, mouse and modem connections… though today, 2 Mb/s Bluetooth is likely slower than the modem.

Bluetooth is used to replace wires connecting a phone to an earpiece, or to an automobile sound system for hands-free phone calls while driving. In this case, both two-way audio and two-way control messages are transmitted.

Bluetooth is also used to stream music from a smartphone to a receiver connected to an amplifier and speakers in an automobile or in a living room.

In the future, wireless collection of readings from devices like heart-rate monitors will be widespread.

Each of these types of applications corresponds to a Bluetooth profile, which is a specified set of capabilities and protocols the devices must support.

Bluetooth implements frequency-hopping, where the devices communicate at one of 79 carriers spaced at 1 MHz in the 2.4 GHz unlicensed band for 625 microseconds (µs), then hop to a different carrier for 625 µs, then to another, in a repeating pattern known to both devices. A particular hop sequence is called a channel, and is identified by an access code.

This is called Frequency-Hopping Spread Spectrum (FHSS), since hopping between 79 carriers spreads energy across spectrum 79 times wider than one carrier. It has the advantage of reduced sensitivity to noise or fading at any particular carrier.

If different pairs of devices are using different hop sequences, they can communicate at the same time in the same place without interfering. There are security advantages if the hop sequence can not be determined by a third party.

The initiator of communications is called the master. It determines the frequency hopping pattern, when the pattern begins, when a packet begins and when a bit begins. The packet and bit timing is based on the master’s clock, which ticks every 312.5 microseconds. Two ticks make a slot. A slot corresponds to a hop. The master transmits and the slave listens in even-numbered slots; vice-versa in odd-numbered slots.

To establish the channel, the master derives a channel access code from its Bluetooth address, and indicates the code to the slave at the beginning of every packet. Both master and slave use this to determine the actual frequency-hopping sequence.

Data is organized into Bluetooth packets for transmission. Packets can be 1, 3 or 5 slots long. A bit rate of 2 Mb/s would mean Bluetooth packets are about 150, 450 or 750 bytes long.

Discovering other devices means sending requests in packets on pre-defined channels called inquiry scan channels. Making a device discoverable means it listens on the inquiry channels, and responds to inquiries with information like its Bluetooth address, name and capabilities. This results in a list of Bluetooth devices displayed on the discovering device, such as a smartphone.

Connecting to a device means paging the device on its paging channel, a channel with access code derived from the target’s Bluetooth address. Devices listen on their paging channel, and respond to pages to establish a session. Once the session setup protocol is completed on the paging channel, the devices begin communicating on the channel defined by the master.

The frequency hopping pattern can be adapted to skip carriers where the signal to noise ratio is permanently low, to improve overall performance.

I hope you’ve enjoyed this tutorial!

This discussion is covered in the following Teracom training courses:
• DVD-Video Course V6: Understanding Wireless

https://www.teracomtraining.com/video_courses.htm

• Online Course 2233 Fixed Wireless

https://www.teracomtraining.com/online-courses-certification/certified-wireless-analyst-cwa.htm#2233

CWA course books released – and the first one is FREE!

The course books for the three Certified Wireless Analyst courses are now available on Google Play Books!

Course 2231: Wireless Fundamentals Course Book  – FREE
Course 2232: Mobile Communications Course Book – US$9.99
Course 2233: Fixed Wireless Course Book – US$5

We’re using Google Play Books because it allows you to read the book on any device: desktop, laptop, tablet, phone, PC, Mac, iPad, android… which is way more flexible than iTunes or other platforms.

The books are formatted the same way as Teracom instructor-led course and DVD course books, with detailed text notes on the left page and the corresponding graphics / bullets page on the right in two-page view.

To get you started, the course book for Course 2231: Wireless Fundamentals is free, downloadable and printable!

To download and print the the course book for Course 2231: Wireless Fundamentals, first add the book to your library (it’s FREE), then on the My Books page, click the three dots and choose “Download PDF” as shown in the screenshot below.

If you print the PDF two-sided then put it in a 3-ring binder, the result will be almost identical to the course books supplied with Teracom instructor-led and DVD courses!

Cheers!
Printable course book

Printable course book

Public Seminar Schedule through June 2016

The Course 101 schedule for the first half of 2016 is out!
Join us for productivity- and career-enhancing training!

October 20-22 Toronto *** 2-FOR-1 SPECIAL ***
January 25-27 Santa Clara *** OPTION: BOOT CAMP ***
February 23-25 Washington DC
March 21-23 Chicago
April 5-7 New York City
May 3-5 Atlanta
June 7-9 Denver
June 14-16 Orange County

Instructor-led training is the best kind of training you can get, where you can interact with others and ask questions in the classroom-style seminar course. Plus, unlimited access to our online courses and certifications is included as a free bonus.

Bust the buzzwords, demystify the jargon, understand the technologies, and most importantly, the underlying ideas, and how it all fits together. Thousands of people have rated this course “excellent” over the years.

Telecom, Datacom and Networking for Non-Engineering Professionals is our famous “core training” – an intensive three-day course designed for non-engineering professionals, to get you up to speed on virtually all aspects of telecom, datacom and networking, from fundamentals and jargon to the latest technologies.

You get a top-ranked instructor, three days in the classroom, a 354-page course book with detailed text notes, course completion certificate, plus free bonus TCO CTA and CTNS certifications, access to all online courses with unlimited repeats, and the companion reference textbook Telecom 101 eBook, all for $1395.

This is the essential core knowledge set, tuned, refined and constantly updated over the course of 20 years.

If you have several people who would like to attend, it may be cost-effective to bring us to you: hold a private “onsite” course for your team… get everyone up to the same speed – and you can have up to 20 for the same price! more info on private onsite courses

more info on Course 101

Tutorials and articles on telecom, datacom, IP, networking, VoIP, MPLS and wireless from Teracom Training Institute. teracomtraining.com … Best of breed: telecom training – since 1992